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This methodology also allows such related issues as the discount rate, wealth, and the
degree of risk aversion to be examined. If specific assumptions are made regarding these
variables, then as shown by Shepard and Zeckhauser, the value of life can be calculated
explicitly, and as shown in appendix B, the consumer surplus associated with one life
table when compared to another can also be determined. These results are demonstrated
using three causes of death: cardiovascular disease, fatal cancer and motor vehicle
fatalities. The life cycle model is a fairly new development and as indicated here,
additional research is needed to verify its conceptual basis.

alternative causes of death (but only as it affects the life table).

the latency of the risk, and

the effects of age;

This report reviews the theoretical models for valuing life and small changes in
risk, appendix A. Particular emphasis is given to the life cycle models developed by
Shepard and Zeckhauser (1984), Cropper (1982) and Arthur (1981). This methodology is
expanded to include approaches for valuing one life table when compared to another,
appendix B. Such changes would be one of the principle benefits of a health program that
extended life expectancy. The use of life tables permit an examination of such issues as:

ABSTRACT
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Strictly speaking, value of life is meaningful only in the context of a particular

time or age interval. What is gained or lost is not so much a life, but years of life. A

health program can merely postpone death and by doing so, extend a person’s life

expectancy. Technically, such health programs increase the survival probabilities that

make up one’s life table; and the value of improved survival probabilities would be a

function of the magnitude of the change, when they occur (latency), as well as other

variables such as a person’s age, health status, and existing level of risk. The purpose of

this paper is to review these technical issues and to develop procedures for valuing one

life table when compared to another based on existing theoretical and empirical results.

This report is organized around two appendices entitled “A Review of Theoretical

The technical and ethical issues of valuing life are not, of course, without

controversy. For some, even the concept of assigning a dollar value to life is offensive

and any amount, regardless of size, cannot possibly measure the true worth of survival to

an individual. In contrast, valuing a small change in the risk of death is often more

acceptable. After all, people daily engage in activities that they know increase their

risk, even if only a little. Example activities would be jay walking, speeding, failing to

use a seat belt, swimming, taking risky jobs, etc. These choices have some value to the

individual and often these values can be implicitly or explicitly estimated.

Recent economic research has made important contributions to the problem of

valuing human life and the related problems of valuing small changes in the probability of

death. Such techniques permit a better understanding of the factors that can alter the

valuation of risk, and ultimately will lead to a more comprehensive and accurate

assessment of those programs that, as one of their benefits, increase life expectances.

Introduction

THE VALUATION OF THE LIFE SHORTENING ASPECTS OF RISK



Models of the Value of Human Life” and “The Calculation of Compensating and

Equivalent Surplus for Two Life Tables, the Perfect Market Case.” The results of these

appendices are summarized in the text to follow. This report begins with some

definitions and a simple economic model for valuing small changes in risk.

Willingness to Pay (WTP)

Initial attempts to establish a value of life assumed that such a value could be

determined by calculating what society would lose should the person die. The most

important economic consequence of death is usually the loss of future earnings, and so,

value of life often has been calculated as the net present value of these earnings. Such

techniques are referred to as the human capital approach and their most useful attribute

is that they are conceptually simple and can be estimated easily. However, most

economists now reject this approach, for a variety of reasons. For example, without

some modification, the value of life for a retired person would be zero or possibly even

negative. As Violette and Chestnut (1983) note:

Although providing useful benchmarks, these (the human capital) approaches do not
provide an estimate of the benefits to the individual of reducing or preventing health
risks because they do not reflect the change in utility, or well-being, that would
result from the change in risk of illness or death (emphasis added).

Human capital approaches measure a person’s contribution to society. In contrast,

many economists now believe that a better measure of the value of life can be estimated

f rom how much an ind iv idua l  is  w i l l ing to  pay for  improved l i fe  expectancy.

Conceptually, value of life, as determined by willingness to pay (WTP), is calculated by

first establishing a willingness to pay for a small reduction in risk, say one in a million

during the next year. Now if this risk reduction is given to one million people, then, an

average of one life would be saved during this period, Thus the value of this one life

would be one million (the population size) times the average amount each person is

2



Since willingness to pay is a subjective judgment, it is expected to and does vary

considerably among individuals. Certainly a person’s wealth affects willingness to pay.

Other factors, such as age, health status, degree of risk aversion, latency of death and

many more (see Violette and Chestnut (1983) for a more complete summary) will also

affect an individual’s willingness to pay. Thus, each individual will have a unique value of

life -- although this value could vary depending upon the circumstances surrounding the

death being discussed -- and over an entire population there will be a distribution of

"values of life.” Most benefit-cost studies assume a single value for everyone, rich and

poor, young and old alike. The next section describes a simple model that is the

foundation for much of the theoretical work done to date. See for example, Freeman

(1979), Linnerooth (1979), Rosen (1981) and Violette and Chestnut (1983). Details of this

model are presented in appendix A.

3

Because there is no market place where mortality risks are openly traded, bought

or sold, estimates of what a person is willing to pay for a small reduction in risk will have

large uncertainties. Typically such estimates are determined from questionnaires or

from related markets, such as wages paid to people in risky jobs. Given the difficulties

of the task, it is not surprising that empirically estimated values of life have varied

considerably, and typically range from 0.4 to 7 million dollars (1982 dollars). See

Violette and Chestnut (1983). Larger and smaller estimates are not unknown. Further,

these estimates usually do not reflect the effects of a variety of variables that are

known to alter a person’s WTP.

willing to pay to obtain this small reduction in risk. For example, if each person were

willing to pay two dollars for this reduction, then the value of life would be estimated as

two million dollars. This approach establishes a statistical value of life that is based

upon small changes in risk. It need not have any relationship with the amount a person

might or even could pay to avoid his own certain and immediate death.



after the transaction, Bg is a worthwhile expenditure if

(1)

is the expected utility before the transaction, and this expected utility is

compensate the individual for the reduction in consumption.

Economic theory says an individual would pay an amount Bg i f ,  after the

transaction, the expected utility is at least as great or greater than before the

transaction. That is, since

One of the simplest models for estimating the value of life considers a single time

period (the immediate future) where an individual has probability p of dying and (1-p) of

living. If this person lives, he will enjoy the consumption of goods and services of the

amount C. This consumption has a utility U(C) to the individual, and it is assumed C = 0

implies death and that U(0) = 0. Suppose the individual has an opportunity to “buy” a small

reduction, 6, in the probability of death, so that it becomes p-6. The question is, what is

the maximum amount, B&i this person would be willing to pay to reduce p to p-8.  If he

pays too much, then the increase in the likelihood of living will not be sufficient to

(2)

The maximum that a person would pay, Bmax, solves equation (2) assuming

equality, and the person’s implicit statistical value of life is Vl = Bmax/G, using the

willingness to pay criterion discussed earlier. In the limit, as 6 * 0, it can be shown that

A Simple Model

4



(3)

where U’(C) is the derivative of U with respect to C. For additional detail, see appendix

A.

Even at this basic level, two important properties of the statistical value of life,

V 1, can be established. First, V l increases with p, the probability of death. Therefore,

equation (3) would generally imply older people have a greater statistical value of life

because of higher mortality rates, ceteris paribus. (But note that other things are not

equal. In particular, an older person has a shorter expected life span.) If it is assumed

that the utility function U(C) is a concave increasing function (i.e., risk averse) so that

then expression (3) also implies Vl increases with C. This implies a wealthy person will

have a greater WTP than a poor person, as might be expected.

From a practical perspective, the expected utility given in equation (1) ignores

several important factors that might be associated with valuing life. It does not allow

for a bequest motive or the effects of insurance and annuities. Perhaps even more

important, it only considers the problem of valuing a statistical death that is to occur in

the immediate future. In actuality, of course, most health improvement programs will

alter a person’s survival probabilities over an entire life time, and so a multi-period

approach is more relevant.

Appendix A addresses how this simple model can be generalized to include these

and other factors. Of particular interest here are the multi-period models of Cropper

5



where i = 1,...T, and T is the maximum number of years a person can live. As a

generalization of the single period model, expected utility is given by the expression

‘i be consumption in year i,

4: be the survival probability through year i, and

D be the subjective discount factor for time (i.e., D = 1/(1+d) where d is the

discount rate)

be income in year i,yi

over several years, it is necessary to broaden the notation. Thus let

In order to model the effects of changes to a life table of survival probabilities

Life Cycle Modeling

(1982), Shepard and Zeckhauser (1984) and Arthur (1981). These models use a life cycle

approach to generalize the single-period model as summarized below.

(4)

where U(Ci) is the utility of consuming Ci in year i. This formulation assumes that the

expected utility is received at the beginning of the period. In some cases an ending

period or middle of period assumption is more appropriate. This can be achieved by

multiplying equation (4) (and all following equations) by D or D”* as appropriate. The

conclusions presented here also assume that the utility function in equation (4) has the

form

6
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and that the individual has access to insurance and annuities (the perfect market case).

Under these circumstances, Shepard and Zeckhauser (1984) show the present value of a

statistical life in year t, conditional on being alive in year t, is given by the expression:

where the amount consumed every year, C, is

(7)

and is constant. (In this notation, Vit means the value of a statistical life conditional on

being alive in year t discounted bock to year i.) When equation (6) simplifies to

(8)

7

Constant consumption is a consequence of the assumption that a person has access to

annuities, has no bequest motive, and that the subjective discount factor for time, D, is

equal to that for money. These issues are discussed in greater detail in appendix A.

Figure 1 shows V,, for males as calculated by equation (6) for three discount rates:

2.5%, 5% and 10%. (Other assumptions posited by Shepard and Zeckhauser are discussed

later.) For the case that Shepard and Zeckhauser calculated where the discount rate is

5%, value of life is at a maximum at age 25 and has an estimated value of $1.64 million

in 1981 dollars. (Unless specified, the remaining figures are in 1981 dollars.) This

decreases to 0.31 million by age 100. The change in slope at age 65 is due to the Shepard

and Zeckhauser assumption that the person has just retired, and income, yi, is now zero



FIGURE 1. VALUE OF LIFE FOR MALES AS A FUNCTION OF
THE DISCOUNT RATE
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The parameter fi in equation (5) calibrates the model for “risk aversion.“ A value

of fi = 0.20 was used for the example shown in figure 1. Since VI I, equation (8), scales

directly with I&, this parameter is clearly critical to the estimated value of life. For

example, if B were in fact equal to 0.10 instead of 0.2, then V 11 should be doubled. The

effect of f3 on Vttr t > I, is more complicated, but V,, should scale with I/B at least

approximately. In an attempt to assess the adequacy of their assumptions, Shepard and

9

We assume that consumption in retirement is supplied only by savings accumulated
during years of earnings. Some factors are omitted in this assumption, but may, as
an approximation be treated as cancelling. For example, our earnings measure
counts only money earnings, excluding employer-provided fringe benefits (insurance
and pension contributions), transfer payments (Social Security benefits) and the
value of home production; but work related expenses (commuting and meals away
from home) and taxes (such as income and Social Security taxes) are also excluded.
(emphasis added)

The values shown in figure 1 depend upon several assumptions that should be

discussed a little more carefully. Shepard and Zeckhauser assume earnings followed the

national pattern where, at age 20, the median income for males was 28% of the

maximum etc., and the maximum occurred at age 50 and was equal to $24,000 (1981). It

is easy to show that the value of life plotted in figure 1 scales directly with this

maximum earning assumption. Thus a person earning twice as much at age 50 would have

an estimated value of life twice as large. As Shepard and Zeckhauser observe:

so that the second term in equation (6) drops out. When the discount rate is increased to

10% (not calculated by Shepard and Zeckhauser), the maximum value of life is reduced to

0.95 million dollars (1981) and it occurs at age 30. A discount rate of 2.5% (also not

calculated by Shepard and Zeckhauser) implies a maximum value of life occurs at age 20

and is equal to 2.46 million dollars. Thus, the chosen discount rate can have a large

effect on the estimated value of life, particularly in the early years. It also affects the

age at which value of life is a maximum. In particular, it is shifted to younger ages as

the discount rate decreases.



Zeckhauser compared their results with the empirical findings of Fischer and Vaupel

(1976). They concluded that at least for the subjects of that study, people were more risk

averse than the parameter B = 0.20 implies (i.e., 8 is less than 0.2) and that these people

also discounted future utility at a lower rate than 5%. Both of these conclusions, of

course, would increase the estimated value of life as just discussed. Clearly more

research is indicated.

Value of life, as estimated by equation (6) measures willingness to pay to avoid a

stat ist ical death that is to occur immediately. In actual i ty, most environmental

programs affect survival probabilities over an individual’s entire remaining lifetime, and

a more useful measure, for benefit cost analysis, is one’s willingness to pay for a new and

better l i fe table when compared to the current one. Appendix B develops the

methodology to make this assessment, and the results are summarized below.

Compensating and Equivalent Surplus for Two Life Tables

Assume that an individual is endowed with a life table specified by survival

probabilities ~$0)~  where o denotes “original.” Under the assumption made earlier, the

optimal consumption pattern is constant over years and is equal to Coos calculated in

equation (7). The expected utility, equation (4), therefore reduces to

where DLY(o) is expected discounted life years, c q$o) D under the original lifei-l,

table. Now suppose a new life table becomes available, qT(n)* This new table would

change (presumably increase) the expected utility to

10



The basic question is what would a person pay to keep a new and improved life table

when compared to the original table (sometimes called compensating surplus), or what

amount of money would an individual demand to forego the new life table (equivalent

surplus). Figure 2 illustrates these two calculations for an individual. The points A and B

in figure 2 are determined by the two life tables q$o) and q$n). The distance B to D is

the compensating surplus (CS) and represents the ‘maximum amount of consumption a

person with the new life table could pay annually and still be as well off (as measured by

utility) as when he had the old life table. The distance A to E is the equivalent surplus

(ES), and represents the amount of additional consumption a person with the old life table

would need to be as well off as with the new life table at B.

Figure 3 shows three different survival probabilities (graphs of life tables) for

males: an original endowed life table, survival probabilities that assume a cure for

cancer has been found, and survival probabilities that assume all cardiovascular diseases

have been cured. These last two tables were derived by S.H. Preston (1972) and (1976),

and of course, represent only estimates of the effect should either of these two causes of

death be eliminated. At age 20, the expected life span under the original table is 72.1

years. This increases to 82.4 years if cardiovascular diseases are cured. In contrast, a

cure for cancer (neoplasms) would add 2.2 additional years to the expected life span

giving a person age at 20 an expected life span of 74.3 years. Table 1 gives the incidence

pattern for these causes of death. For example, of those that live to age 20, 59.3

percent will ultimately die of cardiovascular disease. From this group, 0.07 percent will

die while age 20-24, etc. Table 1 shows that cardiovascular disease and cancer impact

11



FIGURE 2. THE CALCULATION OF COMPENSATING
AND EQUIVALENT SURPLUS
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FIGURE 3. NOMINAL, CANCER FREE AND CARDIOVASCULAR DISEASE
FREE LIFE TABLES FOR MALES

(1) Life tables as determined by S.H. Preston (1972) and (1976).

13



TABLE 1. AGE PATTERNS OF INCIDENCE FOR THREE CAUSES OF DEATH
AMONG MALES (CONDITIONAL ON LIVING AT AGE 20)

Cardiovascular
Age Disease Neoplasm

20-24 0.07% 0.35%

25-29 0.13% 0.49%

30-34 0.29% 0.70%

35-39 0.69% 1.11%

40-44 1.48% 2.04%

45-49 2.69% 3.57%

50-54 4.51% 6.34%

55-59 6.95% 9.73%

60-64 9.55% 13.28%

65-69 12.75% 16.16%

70-74 14.50% 15.79%

75-79 15.17% 13.57%

80-84 14.34% 9.50%

85+ 16.87% 7.36%

Fraction
of all 59.37% 16.22%
Deaths
(age 20)

Reference S.H. Preston (1972) and (1976).

Motor
Vehicles

17.10%

11.15%

8.73%

7.56%

6.98%

6.89%

6.94%

6.71%

6.22%

6.31%

5.64%

4.66%

3.36%

1.75%

2.33%

14



the elderly most. In contrast, risk of a motor vehicle fatality (also shown in table 1) is

highest at age 20, and decreases slowly with age. Preston (1972) calculates that if motor

vehicle fatalities were eliminated, a male life span would increase by only 0.6 years.

Appendix B develops the methodology for calculating compensating and equivalent

surplus and illustrates these equations using the three new life tables just discussed. The

results are plotted in figure 4 (log scale), using a discount rate of 5% and a risk aversion

factor, B, of 0.20. For example, total compensating surplus (i.e., the sum of present and

future payments discounted to the present) that a person would pay to keep a life table

without cardiovascular disease is estimated to be nearly $45,000 at age 20. This

increases to over $166,000 at age 65. These results show that such a life table would be

highly valued, a result that is underscored by the fact that nearly 60% of all male deaths

are caused by cardiovascular disease. As figure 4 shows, compensating surplus for a life

table without fatal neoplasms or without motor vehicle fatalities is less, principally

because the chance of dying from these causes is smaller. Also, in contrast to the other

two life tables, the value of a life table without motor vehicle fatalities actually

decreases with age. Equivalent surplus (not shown) is similar to compensating surplus

except that equivalent surplus exceeds compensating surplus in all of these cases;’  see

appendix B for details.

Perhaps the most important property identified in this analysis is that the new life

table will be most valued by that age group that is at the highest risk. While this has

clear intuitive appeal, this property is not obvious from a simple examination of how

“value of a statistical life” V,, changes with age. In the examples used here, the value of

statistical life was at a maximum at age 20 to 30, depending upon the discount rate, and

for this reason one might assume these age groups would also have the highest willingness

to pay for a new and better life table. This is not necessarily true. In fact, for

‘This is due in part to the assumed utility function. Other utility functions could reverse
this inequality.

15



FIGURE 4. COMPENSATING SURPLUS (EXPECTED NET PRESENT VALUE)
FOR A LIFE TABLE FREE OF A PARTICULAR DISEASE/ACCIDENT TYPE

CONDITIONAL ON BEING ALIVE AT AGE MALES

Age

Discount rate = 5%

Maximum earnings = $24,000
16

Assumptions:



17

168,435 x 0.54 = $90,955. (9)

at age 20, using table 2. In contrast, under the same parameter assumptions, willingness

to pay to avoid a statistical death (that occurs immediately) at age 20 is 1.62 million

dollars. The difference is presumably due to the latency of the cardiovascular death.

Figure 5 plots these and other values associated with a health program that could

received a life table that immunized one male in a hundred thousand, then the expected

number of cardiovascular deaths would be reduced by one. Thus the value of a program

that on average, prevented one cardiovascular death -- which is how many benefit cost

studies pose the question -- would be valued as

100,000/0.5937 = 168,435 twenty year old males

The assumption that all neoplasms or cardiovascular diseases can be eliminated is

unrealistic, particularly in the context of environmental programs that often improve

survival rates only slightly (on the order of 1 in 100,000). Such a small change could

increase an average life span only a few minutes or hours, and so willingness to pay would

be correspondingly smaller. Table 2 presents willingness to pay estimates under the

assumption that one person (not identified) in a hundred thousand receives a new life

table ( i .e.,  one person in a hundred thousand can be immunized against fatal

cardiovascular disease, cancer or motor vehicle accidents). These values amount to only

a few cents or at most a few dollars. However, if the environmental programs affected

several millions of people, the overall value of the program would be substantial.

Since 59.37% of all male deaths are cardiovascular-related (at age 20), if

cardiovascular diseases and neoplasms, willingness to pay for a new life table without

these sources of death was a maximum in the age range of 55 to 85, when measured by

either compensating or equivalent surplus.



TABLE 2. COMPENSATING SURPLUS (PER PERSON) ASSUMING
ONE MALE IN A HUNDRED THOUSAND CAN BE

IMMUNIZED AGAINST A SPECIFIC CAUSE OF DEATH

Age
Cardiovascular

Disease

20 0.5463

25 0.7034

30 0.8895

35 1.1155

40 1.3800

45 1.6748

50 1.9495

55 2.2478

60 2.4950

65 2.6969

70 2.8457

75 2.8678

80 2.8036

Compensating Surplus (1981 dollars)*

Cause of Death

Cancer

0.1633

0.2106

0.2554

0.2987

0.3716

0.4408

0.4833

0.5357

0.5506

0.5022

0.4314

0.3247

0.2224

Motor
Vehicles

0.1149

0.0838

0.0760

0.0520

0.0512

0.0496

0.0355

0.0354

0.0350

0.0154

0.0169

0.0134

0.0083

*This is willingness to pay to immunize one male in a hundred thousand. It is not
to be compared with willingness to pay to reduce the death rate by one in a
hundred thousand, since immunization against a particular cause of death does not
guarantee the person will not die of some other cause. See text. These
calculations also assume a discount rate of 5% and a risk aversion factor, B, equal
to 0.20.
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FIGURE 5. WILLINGNESS TO PAY TO REDUCE THE NUMBER OF
MALE DEATHS BY ONE, CONDITIONAL ON LIVING TO AGE

Assumptions:
d     Discount rate = 5%

B = 0.20
Maximum earnings = $24,000
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eliminate exactly one cardiovascular, one cancer or one motor vehicle death. As

would be expected, the value of avoiding an immediate death is always greater than the

value of avoiding a (perhaps delayed) cardiovascular, cancer or motor vehicle death. In

this regard, it is of interest to note that Litai (1980) using a very different methodology

estimated that immediate risks require 30 times more compensation than delayed risks.

The ratios shown in figure 5 typically vary from between 1 to 20, depending upon age and

the source of the risk.

Discussion

As this report shows, the value of life or the value of one life table over another

cannot be viewed as simply a single number. The usefulness of the economic analysis

presented here is that it identifies how some of these factors might alter the estimated

value of a statistical life and the value of one life table over another. Single-period

models indicate that the value of a statistical life should:

increase with wealth;

increase with risk, and

increase with risk aversion.

The multi-period models show that:

value of a statistical life varies with age although the pattern varies with the
discount rate and other assumptions,

willingness to pay for a new life table is greatest for those age groups most at
risk, and

life saving programs that reduce latent risks have less value than programs
that reduce immediate risks, ceteris paribus.

If explicit assumptions concerning yearly income, yi, consumption Ci, and the form of the

20



utility function is indicated. Shepard and Zeckhauser also express their interest in this

subject.

In order for this methodology to be considered reliable enough to be used in EPA

policy decisions several issues still need to be resolved. Certainly more work on the

The objective of this analysis was to demonstrate the feasibility of a methodology
and to indicated orders of magnitude, not to generate precise numbers for
willingness to pay. If approach gains acceptance, substantial effort will have to
be expended in estimating utility functions. Assessments of data about individual
choices, as well as survey work, will be helpful in this task. Empirical research
about utilities over lifetimes of different lengths would also be required to provide
ultimate relevance. (emphasis added)
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Future Research Efforts

assumption is to dampen the variability of the value of life over different age groups.

Shepard and Zeckhauser believe that the Robinson Crusoe case and the perfect market

case represent two poles, with actual willingness to pay for most people falling

somewhere in between. Also shown in figure 6 is the expected future discounted life

earnings that are normally associated with the human capital approach. Note that it is

zero at age 65 and older due to the assumption that the individual has retired.

Crusoe case where it is assumed individuals do not have access to annuity markets and

cannot borrow. Thus consumption is limited in the early years to the amount actually

earned. Figure 6 compares these (in 1978 dollars) with those for the perfect market

case. As might be expected, the value of a statistical life under the Robinson Crusoe

case is less than that calculated under the perfect market case in the early years due to

low income and the inabi l i ty to borrow. Thus the effect of the perfect market

utility function U are possible, then as the examples illustrate, the effects of these

factors can be made fairly precise.

Shepard and Zeckhauser (1984) also consider a scenario they call the Robinson



FIGURE 6. HUMAN CAPITAL AND WTP MEASURES OF VALUE OF LIFE
AS FUNCTIONS OF AGE FOR AN AVERAGE MALE AS CALCULATED

BY SHEPARD AND ZECKHAUSER

Assumptions: B = 0.2
Discount rate = 5%
Maximum earnings = $18,000
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additional sources of income by age, such as fringe benefits, proprietor

income, and transfer payments such as Social Security.

An important practical problem associated with the life cycle model is the requirement

that the analyst be able to develop a life table for each proposed environmental change

to compare with the reference table. For example, the cancer free life table developed

by Preston would be inappropriate for cancers that mainly affected young people.

Implications for Benefit/Cost Studies

It is not uncommon to see a risk assessment conclude that if certain specified steps

23

nature of the risk (voluntary, the possibility of pain and suffering, etc.), and

health status (quality of life, or QALYS),

friends and family,

EPA uses a discount rate of 10% that presumably reflects the current interest rates

for money. It is not clear if people would discount utility values at this same rate. Some

researchers have, in fact, proposed models where utility is not discounted at all. Some

insight into this problem could be acquired by an appropriately worded questionnaire and

empirical research about lifetimes of different lengths. As indicated earlier, Shepard

and Zeckhauser found some evidence that the subjective discount rate might be less than

5%, but additional work is necessary. In addition, the current life cycle models do not

incorporate the effects of

As figure 1 indicates, the chosen discount rate also has considerable leverage on

the calculated value of life. In addition, all the examples presented here assumed the

subjective discount rate for time equals the discount rate for money. If this is not true,

then as Cropper shows, the optimal consumption pattern, Ci, will either increase or

decrease with age under the perfect market scenario. No examples have been developed

here that assume the subjective and monetary discount rates are different, however.
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weighted average. That is, if f, is the fraction of all cancer deaths that occur in a par-

ticular age bracket in table 1, the average value of life of those who have died would be

(6), Vtt (also given in table 1 of appendix B) and graphed in figure 1. To account for age,

the distribution of cancer deaths by age groups, table 1, can be used to calculate a

per year. Since these 2.08 deaths are reasonably immediate, (i.e., they occur within a

year’s time) their value could be estimated using value of life as calculated by equation

15,000,000
72 x  100,000 = 2.08

15 million males. In particular, this hazard has increased the risk of cancer by 1 in

100,000 over a lifetime of 72 years. Assuming the cancer is always fatal, a program that

removes this hazard will cause the number of male cancer deaths to decrease by

approximately

To illustrate, suppose an environmental hazard has been identified that jeopardizes

depending upon whether it is immediate or not. Further, the age distribution of those

affected by the program needs to be factored in. The correct valuation of a program

that a reduced number of cancer deaths has as one of its benefits should reflect this

variation.

provided there is an acceptable WTP est imate of value of l i fe, such
assessments can often be monetized for purposes of benefit cost analysis.

However, as this report has demonstrated, people should value l i fe dif ferently

provide an assessment of the effects of a particular action that is easy to
interpret and

are taken (action levels, clean-ups, etc.) then x number of cancers, or other causes of

death, can be prevented. Such summary statements are useful because (although the

very real uncertainties of such assessments are often ignored) they



when Vii is calculated assuming a discount rate of 5%. Thus 2.08 deaths would be worth

2.08 x 793,900 = 1.65 million dollars. Adding together the value of these deaths, for all

future years and discounting to the present at 5% (this approach is essentially due to

Arthur (1981)), this program would be valued at

33.0 million dollars.

Note a similar calculation should be made for females if appropriate. Although there are

some differences, as demonstrated in appendix B, 15 million females would value such a

program approximately the same, ceteris paribus.

While the procedure just developed seems reasonable, an alternate, and possibly a

more dependable approach for measuring the worth of this program would be to calculate

the compensating surplus associated with the new life table for each of the 15 million

people affected. Assuming a life table that prevents one cancer in a hundred thousand

can be approximated by assuming 6.2 males2 get a neoplasm free life table and 100,000 -

6.2 = 99,993.8 males get the old life table, then the compensating surplus for a 20 year

old would be $1.01 (6.2 x 0.1633, table 2). Assuming the males affected were typical of

the general population, 11.32% of the 15,000,000 people should fall into the 20 to 24 age

bracket (table 18 appendix B), the consumer surplus for these 1.70 million people would

be calculated as 1.70 x 1.01 = 1.72 million dollars. Consumer surplus for other age groups

‘Since  a 20-24 year old has a 16.22% chance of dying from cancer, table B18, 1/.1622 =
6.2 males need to be immunized, on average, to avoid one cancer death.
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This report has reviewed relevant economic models for valuing life (also see

Appendix A) and discussed in more detail the life-cycle model of Arthur (1981) and

Cropper (1982) and Shepard and Zeckhauser (1984). This model can be used to develop

estimates of the value of life as a function of age and the value of a new life table over

the original.  Several examples have been used to i l lustrate the methodology.

Considerable additional work is required to validate the approach and some research

topics have been suggested.

Summary

the present to the indefinite future, (albeit discounted at 5%), while the compensating

surplus approach valued the new life table for only those presently living. This second

approach therefore assumes the new life table will become the endowed life table for

future generations and therefore has no associated compensating surplus.

are estimated in a similar fashion. In total, the compensating surplus for all 15 million

sums to 33.8 million dollars, nearly the value calculated using the first technique. Table

3 compares these two methods for all three sources of death. These examples indicate

that the two methods will produce comparable results, although the compensating surplus

approach appears to give slightly higher values. It is interesting to note that a reduction

in the number of motor vehicle fatalities is assessed as having a higher value than

reductions for either cardiovascular or fatal neoplasms, presumably because motor

vehicle fatalities affect young people most and young people have the greatest value of

life. It is also worthwhile pointing out that the first method considered a time span from



TABLE 3. ALTERNATIVE CALCULATIONS OF THE BENEFITS
ASSOCIATED WITH A PROGRAM THAT REDUCES RISK

OF DEATH FROM A PARTICULAR CAUSE
BY 1 IN 100,000 AMONG 15 MILLION MALES, 1981 DOLLARS

Method
Cardiovascular Fatal

Disease Neoplasms
Motor Vehicle

Fatalities

Weighted Average
of Value of Life, 29.0 million 33.0 million 52.6 million
Males

37.9 million 33.8 million 54.8 million

Total Compen-
sating Surplus
for 15 million
Males

Assumptions: B = 0.20
Discount rate = 5%
Maximum earnings = $24,000
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already familiar with willingness to pay concepts and other relevant economic theory;

and so this presentation will focus on the key properties of the model. Later sections

complexity are introduced and discussed. It will be assumed here that the reader is

The next section describes a simple value of life model that ignores most of the

factors given in figure 1. This model will serve as a control as other models of increasing

Theoretical models that calculate a value of life are important for several

reasons. A theoretical approach imposes a logical rigor that helps discipline and define

key concepts. Further, the need to make explicit assumptions concerning the behavioral

characteristics of humans identifies important topics for empirical research. Finally,

even after all the caveats and limitations have been acknowledged, some results may be

robust to assumptions, and therefore be indicative of a more fundamental truth. All

these attributes can contribute to EPA’s research program for improving estimates of the

value of life.

APPENDIX A: A REVIEW OF THEORETICAL MODELS

OF THE VALUE OF HUMAN LIFE

The purpose of this appendix is to summarize current models for valuing human life

and to discuss their properties with regard to such factors as age, degree of risk, latency

of risk and life years. While the general principles of how to value life are now fairly

well established--using willingness to pay (WTP)--there is still no consensus about

details. Thus models in the literature will vary with regard to single vs multi-period

analysis, the use of insurance and annuities, time preference assumptions, bequest

motives, and other factors that might inf luence an individual ’s WTP. Figure 1

summarizes these choices and gives a taxonomy of various factors that have been

examined in the value of life literature. Many of these factors will be discussed in later

sections.
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FIGURE I. A TAXONOMY FOR VALUE OF LIFE CALCULATIONS*



will discuss more realistic, and therefore more complicated, models and address some of

the questions and problems posed by EPA with regard to this work effort.

A Simple Model for Valuing Life

A simple model for estimating value of human life considers a single time period

where an individual has a probability p of dying and (1-p) of living. If this person lives, he

will enjoy the consumption of goods and services of the amount C. This consumption will

have a utility U(C) and it is assumed C = 0 implies death and U(0) = 0. A person’s expected

utility is therefore given by

E(U) = (1-p) U(C).

The value of life V, as measured by willingness to pay, can be shown to be equal to

dC/dp. This can be calculated by taking the total differential of E(U(C)), setting it equal

to zero, and solving for dC/dp. Thus,

S o

(A1)

This expression has been obtained by a number of people: Freeman (1979),

Linnerooth (1980), Thaler & Rosen (1975) and others. Even at this basic level, several

important properties of Vl can be established. For example, V l increases with p, the

probability of death, and therefore would generally assign higher values of life to older

people because they have higher mortality rates, ceteris paribus. By assuming U(C) is a
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concave increasing function (i.e., risk averse) so that

(A2)

then expression (A1) above also will increase with the level of consumption, C. This

implies that wealthy people will have a greater willingness to pay than poor people. In

fact, if it were assumed that U(C) had the functional form U(C) = @, where 0 < B 2 l,

then

(A3)

In this case, value of life is directly proportional to consumption and inversely

proportional to the survival probability and the elasticity of consumption.

Some Problems With This Simple Model

This model has recognized limitations, but it is important because it is often a

starting point for more elaborate analysis. Fundamental to this model is the assumption

that utility of living can be equated to the utility of consuming, and that the utility of

death, C=0, is totally captured by the single point U(0) = 0. Even assuming this construct

is valid, there are additional problems. Some authors have proposed that there exists a

level of consumption C* > 0 such that when consumption falls below C*, life is viewed as

being no better than death, i.e., U(C) = 0 for 0 5 C < C*. Others have proposed that the

property of being alive is valued in its own right and the utility of consumption is only

part of the utility of being alive and consuming. These two alternatives are illustrated in

figure 2. Note that the utility function UI implies there is some interval C* to Cl,

where

A - 4



FIGURE 2. TWO ALTERNATIVE UTILITY FUNCTIONS FOR THE
SIMPLE MODEL COMPARED TO THE NOMINAL VERSION

C* = level of consumption equivalent to death
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and therefore the value of life VI, equation (A1), is less than C/(1-p), so that VI 2 C.’

When consumption, C, is identified as the remaining income that a person will earn from

that moment forward until death, (i.e., essentially human capital), this result has been

interpreted as implying that the value of life as calculated by WTP is greater than the

human capital approach if consumption is greater than some minimum value Cl, while

less than the human capital approach for levels of consumption between C* and Cl.

If the utility function follows U2 in figure 1, then life is valued separately and

independently of consumption by the amount indicated, Uk. When U2 = Unominal  + Ua,

value of life, VI, is increased by the amount U,/( I-p)Lj(C).  Further VI will always be

greater than C, assuming relation (A2) holds, and so the WTP approach will exceed the

human capital approach. See Linnerooth (1979) for a more detailed analysis of these two

cases.

This simple model can be generalized by considering more than one period, a

bequest motive, and an allowance for insurance and annuities. These complications will

be considered in turn in the following sections.

Annuities With No Bequest Motive

Assume that the basic model is modified so that the person has access to fair

annuities and there is no bequest motive. Then it is clear that such a person would put

all his wealth into an annuity that paid C/(1-p) if he survives the risk and 0 if he dies.

Thus his expected utility is
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The total differential is

Thus, value of life is given by the expression

(A4)

To show V2 is an increasing function of C/(1-p), note

and so the derivative is positive under the usual risk averse assumptions:

This shows that V2 is an increasing function of C/(1-p). Thus, as in the simple model, V2

increases with C and p. Interestingly it is not possible to determine whether access to
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annuities generally increases or decreases the value of life. For p close to zero,

expression (A4) is approximately

which would be less than VI = U(C)/U’(C)  when p -C 0, from (A1). However, as p

increases, V2 could become larger than V 1. For the particular case U(C) = CB, 0 < f3 < 1,

the relationship is better determined:

( in equation A3),

for all values of C, p and f3. Thus access to annuities would decrease one’s willingness to

pay, presumably because some of the negative consequences of risk have been mitigated

by increased consumption, should the individual live.

Bequest Motive: Multi-State Utility Functions

One of the more frequent generalizations to the simple model is to assume the

utility function decomposes into two states such that the utility of wealth, W (as

compared to consumption) has the form

In particular, L(W) is the utility of being alive with wealth W, and D(W) is the utility of

being dead and leaving an estate, W. This structure assumes the individual has no access

to annuities or insurance, but allows an individual to have a bequest motive. To the
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extent that a bequest motive is a mitigating factor: one could expect, a priori, the value

of life to decrease.

Again by taking the total differential of the expected utility

and solving for dW/dp, value of life is determined as

(A5)

(A6)

The Effect of Fair Insurance and Annuities

on the Two State Model

Insurance and annuities allow a person to allocate wealth between present and

future consumption and the estate. Let WL be wealth while alive and WD be the size of

the estate. Then

Smith and Gilbert (1984) suggest that more than two states may be required if

people value a cancer death differently from a heart attack death or from an accident

related death, etc. This generalization is only now being studied?

Jones-Lee (1974) showed that this expression is an increasing function of p and W

under the normal risk averse assumptions and the assumption L(W) > D(W). This latter

inequality implies living is preferred to death at all levels of wealth. Weinstein et al

(1980) obtained similar results with somewhat weaker conditions. Thus this two state

model exhibits properties similar to the simple model. Also it is clear that for D(W) > 0,

VS < VI which validates the a priori expectation.
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is the amount of the insurance (+) or annuity (-). With fair insurance and annuities, an

appropriate budget constraint is

(A7)

To see this, assume a person buys fair insurance having a premium of 1. So WL = W - 1.

With death, the insurance company pays 1/p and so WD = W - 1 + 1/p. Substituting into

expression (A7), the constraint is clearly satisfied. A similar argument applies to

annuities.

The value of life can be calculated as before except now WL and WD are chosen to

maximize (A5) subject to the above budget constraint. It is easily shown that this implies

and that

( A 8 )

A - 1 0

In particular, equation (A8) shows that the amount of insurance a person buys will usually

understate the value of life. Cook and Graham (1977) show that under the normal risk

averse assumption Vb is an increasing function of p and W, and so behaves similar to the

simple model. This result is in contrast to one obtained by Jones-Lee (1976) where he

shows V3, but with insurance, will not depend on p. However, Jones-Lee is careful to

note that his conclusion is valid only in a small neighborhood of p, where an individual is

not apt to adjust the level of insurance. For large variations in p, V will change and the

Jones-Lee result is not applicable.



solution has been to assume that expected lifetime utility has the form

These four models are summarized in table 1. Broadly, they all exhibit similar

characteristics and indicate that V increases with p and W (or C) and that these

properties are fairly robust with regards to the assumptions invoked.

Mult i -Period Model

The single period is useful for analyzing the value of life when the risk of death is

immediate. But these models cannot determine the value of life as a function of age.

Multi-period models, however, introduce several complicating factors. Such models need

to reflect market interest rates and an individual’s subjective time preference. Such

models also need to include yearly consumption and saving patterns. A major problem is

simply generalizing the single period utility function to a lifetime utility function. One

(A9)

= where

= 1/(1+d) is the subjective discount factor3

= the probability of living through the end of year i

where

D

q;”

qj
= the probabil i ty of surviving the jth year given one is al ive at the

beginning of the jth year. It will be assumed that if death occurs, it
occurs at the beginning of the year. It is also assumed q I = 1.

Ci = consumption in year i

Uci) = the utility of consuming Ci in year i, and

T = maximum life span.

While this is an obvious generalization of the one period model, there has been little

research as to its suitability. As Shepard and Zeckhauser (1982) remark, the use of
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TABLE 1. SOME GENERIC SINGLE PERIOD MODELS FOR VALUE OF LIFE
AS MEASURED BY WILLINGNESS TO PAY



equation (A9) requires the heroic assumption that

“an individual’s utility over a life span of different lengths can be represented as a

weighted sum of period utilities. By invoking this assumption, we join with most

previous literature on lifetime consumption patterns.”

An important exception to this approach is given in an article by Pliskin et al (1980)

where lifetime utility is modeled as the utility of y additional years of life, at an average

health state, q, with utility H(q). It has the form

t, as evaluated in year i, would have the form (see Freeman 1979)

Assuming utility can be specified as a weighted sum as in equation (A9), and

assuming consumption and survival probabilities are exogenous, the value of life in year

not well understood at this time.

where r is the risk aversion factor. However, the properties of this utility function are

(A10)

As Freeman notes, there are no constraints on the resulting values of Vit and so

various inconsistencies are possible. For example, one might expect Vit to equal Vi+ l ,t

except possibly due to a year’s worth of interest. That is

(A11)

where R = the discount factor for money. From equation (A10), this relationship
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would imply

and more generally (assuming q?i 1)

(A12)

Life Cycles Models

When consumption is exogenous, there is no reason to expect equation (A12) above to

apply. However, with the assumption that a person can optimize his l i fe long

consumption pattern, either through savings or through money markets, relationships

similar to (A12) can be demonstrated.

Some of the more recent analyses for valuing life (Cropper (1982), Arthur (1981),

Shepard and Zeckhauser (1982)) have assumed a life cycle approach to consumption that

lets an individual use annuities and life insurance to adjust consumption Ci in year i to

maximize lifetime expected utility. This allows a person to borrow funds during low

income years and save during peak earning periods. The account given here is due to

Cropper (1984) and it differs only in detail with that developed by Shepard and

Zeckhauser (1982), and Arthur (1981).

To begin, assume there is no bequest motive and that fair actuarial notes can be

bought (annuities) and sold (regular loans guaranteed by life insurance). The assumption

that there is no bequest motive implies the individual will convert all wealth into

annuities. To prevent an individual from issuing an unlimited number of actuarial notes,

Cropper (following Yaari (1965)) requires the number of notes outstanding in the last

year, T, to be zero, where T is the maximum biological age limit. This can be shown to
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be equivalent to the condition

(A13)

requires

where

A = initial wealth and

yi = income in year i.

To maximize expected lifetime utility, equation (A9), Cropper (as well as others)

shows that the optimal consumption schedule, Ci, subject to the above constraint

(A14)

The value of life is shown by Cropper to be

Note that if R = D, then this equation implies optimal consumption, Ci, is constant for all

i. Also note that except for the absence of the factor 4, this equation is the same as

equation (A12) determined earlier.

(A15)

beginning). It is also easy to show, given equation (A12), that

(Cropper actually obtains an expression that has the summation beginning at i = t + 1. This

is because she assumes death will occur at the end of the year instead of at the
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Under normal risk averse assumptions,

Thus the value of life at age t evaluated at various years prior to t, differs by the amount

of interest that would accrue.

is greater than zero and an increasing function of Ci. Thus Vit is composed of two

positive terms, one of which is the present value of the remaining expected lifetime

earnings (i.e., the human capital approach)

and the other a function of the utility.

Cropper also shows that Vit is an increasing function of pi = I-qi if and only if

(A16)

An Example: U(Ci) = Ci’

equal to

To illustrate some of the properties of this lifecycle model assume the subjective

discount factor D is equal to R (as in Shepard and Zeckhauser (1982), (1984)). Also

assume initial wealth is zero. Then lifetime consumption is a constant over time and

period model will behave differently from the single period model.

With positive initial wealth, A>0, Ci will likely be greater than yip and so this condition

will likely be satisfied. For those cases where condition (A16) does not hold, the multi-
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By making the additional assumption that U(Ci) = CiB, 0 < B < 1, value of life can be

expressed as

(A17)

This result is essentially the same as that obtained by Shepard and Zeckhauser using a

scenario they called the perfect market case, except they calculated the value of life

conditional on being alive in year t. That is, they use

Broadly, the estimated maximum value of life falls in the 1 to 1.25 million dollar

range and occurs at age 40 for the Robinson Crusoe case and at age 25 for the perfect

market case. These estimates are inversely related with the assumed elasticity, @,

Their analysis also considered an example they called the Robinson Crusoe case where an

individual is assumed to have no access to actuarial money markets but is allowed to save

and earn interest. By taking the earning profile (circa 1978) and life table of an average

US male conditional on being alive at age twenty, they establish representative values of

yi and $, in equation (A17) above. The interest rate was set equal to 5%, and 8 was

chosen as 0.20. This allowed them to estimate the value of life for various age

brackets. Their results are summarized in table 2.
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TABLE 2. VALUE OF LIFE AT VARIOUS AGES
FOR MALES WITH 1978 INCOME PROFILES

ROBINSON PERFECT
AGE CRUSOE CASE MARKET CASE

20 0.50 million 1.05 million

40 1.25 million 0.97 million

50 1.00 million 0.80 million

60 0.63 million 0.60 million

70 0.33 million 0.42 million

80 0.10 million 0.29 million

SOURCE: Shepard and Zeckhauser (1984)

DISCOUNTED
EXPECTED
EARNINGS

0.20 million

0.22 million

0.16 million

0.09 million

0.00

‘To reflect 1981 incomes, these values should be increased by about 28%. The * on V++
indicated that this is conditional on being alive in year t, as developed by Shepard and
Zeckhauser (1984).

A-18



however. Thus WTP would be larger or smaller than that given in table 2 depending upon

whether an individual’s own elasticity was smaller or larger than 0.20. For this reason,

the result given in table 2 may be more useful for establishing how value of life might

vary with age, than as actual estimates of the value of life. Indeed, Shepard and

Zeckhauser also make this point. They also note that both scenarios represent extreme

cases, and so would expect actual WTP to lie somewhere in between.

For many applications, value of life per se, is not as important as value of

additional life year (or expected life years). These computations are given in table 3.

For example, at age 20, a male can expect to live another 52 years. From table 2, the

value of life (Robinson Crusoe case) at age 20 is 0.5 million. Thus each expected life

year is worth 0.5/52 = $9,615.00. The Robinson Crusoe case indicates the value of each

expected life year first increases and then decreases with age. For the perfect market

case, the value of each expected life year increases with age, although this increase is

often fairly modest. The increasing trend associated with the perfect market scenario

implies that given a choice between two programs, each saving the same number of

expected life years, but one directed at the elderly and the other directed at youth, the

program for the elderly would be more highly valued. Note, however, that the equal

expected life years requirement implies the program for the elderly must include more

people. Note also that a different life table could give a very different pattern; and so

the results here should not be generalized without further analysis.

Table 4 summarizes the multi-period models. Also indicated is a two state, multi-

period model as developed by Cropper. The resulting expression for the value of life,

however, was very complicated, even after making the simplifying assumption that

utility has the form CF. Thus no additional analysis is presented here.

Summary

This appendix has examined how theoretical models calculate value of life with
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TABLE 3. VALUE OF LIFE YEARS AT VARIOUS AGES FOR US MALES

Va lue  o f  each  expec ted  l i f e  yea r
c o n d i t i o n a l  o n  l i v i n g  t o  a g e  t

WTP WTP Discounted
Rob inson P e r f e c t Expected

C r u s o e Market Earn ings

Male Remaining
L i f e  E x p e c t a n c y
Assuming One Is
A l i v e  a t  A g eA g e ,

20 52 9,600 20,200 3,800

40 33.9 36,900 28,600 6,500

50 25.3 39,500 31,600 6,300

60 18.2 34,600 32,000 4,950

70 12.4 26,600 34,100 0 . 0

80 7 . 7 13,000 37,700 0 . 0
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TABLE 4. THREE MULTI-PERIOD VALUE OF LIFE MODELS 

Model Typical Assumptions Value of Life Properties References 
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Table 5 summarizes these findings. Appendix B develops and illustrates the theory

for calculating WTP for one life table vs another.

age,

access to money markets,

income,

level of risk,

degree of risk aversion,

subjective and real discount rates, and

bequest motive.

regard to a number of factors:
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TABLE 5. SUMMARY RESULTS

Variable Factor

Fair Annuities and
Insurance

For general utility function, fair annuities and insur-
ance can either increase or decrease value of life, V.
When U=C B , access to annuities will decrease V. For
multi-period models access to these financial instru-
ments implies

Effect on Value of Life

Thus, C, (and therefore U(C,)) is increasing, constant
or decreasing over time depending upon

(and assuming U is an increasing concave function).

Bequest Motive A bequest motive essentially requires a two-state util-
ity function: L(W) and D(W). From equation (A6), value
of life clearly decreases with a bequest motive. (This
is clear by assigning D(W) = 0, all W.)

Level of Risk For single period models, value of life increases with
degree of risk p. This property was also found in the
multi-period model provided

equation (A16).

Level of Consumption

Age

Value of life increased with wealth/consumption for all
models. This result has important implications for em-
pirical studies since many of the hedonic wage models
focused on blue collar jobs while surveys have ques-
tioned teachers/professionals.

The multiperiod models show value of life does depend
upon the age of the individual. The results are mixed,
however, and depend upon what assumptions are made.
Value of a life-year also changed, with age varying by
a factor of two between highest and lowest value.

Utility Function Most theoretical analyses assume the utility function
is a concave increasing (US1 < 0 < U’) function of
wealth or consumption. Multi-period models use a
weighted sum of yearly utilities. Clearly more re-
search is indicated here.
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1. Conley demonstrates that Cl could be infinite and therefore Vl CC for all C.

2. A preliminary examination of the topic is found in an EPA report by Steve Beggs:
Diverse Risks and the relative Worth of Government Health and Safety Programs:
An Experimental Survey, June 1984.

3. For example Jones-Lee (1976) and Arthur (1981) do not discount utility over time
(i.e., D=1.0). Keeler and Cretin discuss this issue with regards to cost benefit
analysis when benefits are not monetary (such as the number of lives saved). They
conclude that costs and benefits should be discounted at the same rate. However,
their analysis does not address utility functions.

FOOTNOTES
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Assume two life tables are available, qpo) and qgn), where qgo),  t= 1,...T, are the

original survival probabilities, and q@)s are new probabilities that reflect some health

improvement. Then following the life cycle theory of Cropper (1982) and Shepard and

Zeckhauser (1984) as described in appendix A, the expected utility under the original life

table would be

Valuing a Life Table

Value of a life, as calculated by willingness to pay, is usually defined as the

aggregate amount of money a large group of people would pay to reduce the number of

deaths among them by one. For example, if a group of 100,000 people were willing to

pay, on average, $10.00 each to reduce the number of deaths by one (i.e., a reduction in

the death rate by 0.00001), then life would be valued as 100,000 x $10.00 or one million

dollars. In actual practice, most life savings programs adjust several years of a person’s

life table. This complication has not been adequately addressed in the literature, and in

particular, it is of interest to determine what a person’s willingness to pay would be for

one life table in place of another.

SURPLUS FOR TWO LIFE TABLES, THE PERFECT MARKET CASE

APPENDIX B: THE CALCULATION OF COMPENSATING AND EQUIVALENT

where D = (I+d)-I  is the subjective discount factor, and Ci(o) is the original consumption

pattern, This expected utility would change (presumably increase) to
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for the new life table.

Under the perfect market scenario, (i.e., annuities and insurance) Cropper (1982)

showed that consumption in year t would be constant and would equal (assuming no initial

wealth)

(B1)

where R (assumed equal to D)’ is the discount factor, for money, and yiis the income in

year Thus expected utility for the original life table simplifies to

(B2)

where

(B3)

is the expected discounted life years (in physical units) associated with the original life

table and annual consumption is, by equation (B1),

(B4)

Similar formulas for E(U,) and < for the new schedule are easily derived. Note that the

expected utility has been simplified to only a function of yearly consumption, C, and

discounted life years. This will be the basis for valuing one life table over another.

The basic question is what would a person pay to get or keep a new and improved

life table when compared to the original table (sometimes called compensating surplus),
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is equal to

To calculate compensating surplus note that equation (B2) implies G, in figure 1,

or what amount of money would an individual demand to forego the new life table

(equivalent surplus).*  Figure 1 illustrates these two calculations. The points A and B in

figure 1 are determined by the two life tables, qpo) and qgn), and the equations (B2) and

(B3). The distance B to D is the compensating surplus (CS), and represents the maximum

annual amount of money a person with the new life table could pay and still be as well

off (in terms of utility) as with the old life table. The distance A to E is the equivalent

surplus (ES) and would be the amount of additional money a person with the old life table

would require to be as well off as he would be with the new life table at B.

where U-l is the inverse function. Thus compensating surplus is

(B5)

This is the maximum amount a person with the new life table could forego on an annual

basis and still be as well off with the old life table.

The expected utility in year t, conditional on being alive in year t, is
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FIGURE 1. THE CALCULATION OF COMPENSATING
AND EQUIVALENT SURPLUS
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where

(B6)

is the expected discounted life years remaining conditional on being alive in year t. Thus

compensating surplus in year t, conditional on being alive, would be

(B7)

where DLYt(n)  is calculated as in equation (B6) using q$n). A similar analysis shows that

the equivalent surplus is given by the equation

(B8)

The values CS, and ESt represent the maximum amount of money an individual would pay

or the minimum amount he would demand each year to make him indifferent to the two

life tables, conditional on being alive in year t. The total expected compensating surplus,

summed over a person’s remaining life time and discounted back to year t, would be

(B9 )

Similarly, the total discounted equivalent surplus would be
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(B10)

To demonstrate these formulas, the example of Shepard and Zeckhauser (1982) will

be used. Relevant quantities are given in table 1. (Some of these numbers are only

approximate, since they were estimated off of graphs presented in that paper. The

number of significant digits reported in table 1 exceed that which would be required. It

is intended to permit the reader to make independent verification of the results. Actual

estimates of the value of a one life table compared to another have large uncertainties,

and rounded values would be appropriate in other circumstances.) To simplify the

calculations, Shepard and Zeckhauser divided age into five year intervals. The survival

probability q$o), and income data, yip are assumed to apply to each year in that

interval. Maximum income is taken to be $24,000 at age 50 and this corresponds

approximately to the median amount earned in 1981 by a male worker in the 45 to 55 age

bracket, according to the Bureau of Census. The value of yi in table 1 is the ratio of

income in year i to this maximum amount. A discounted life interval conditional on

being alive in year t, DLY,(o),  is calculated as in formula (B6), and these numbers should

be multiplied by 5 to calculate discounted life years. The value of a statistical life, Vtt,

conditional on being alive in year t, (also see appendix A) is calculated by Shepard and

Zeckhauser:

An Example

These two quantities give alternative measures of the total value of the new life table

over the old one, assuming the individual was alive in year t.
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TABLE 1. THE EXAMPLE OF SHEPARD AND ZECKHAUSER
(updated to 1981 dollar)

(1)
(2)

(3)
(4)

(5)
(6)

Life table is conditional on having lived to age twenty.
Income relative to maximum, that is assumed to occur at age 50. Shepard and Zeckhauser set this maximum to $18,000

(circa 1978). This had increased to $24,000 by 1981.
Discount factor R = 1/ 1.05. The factor of 5 is due to the use of 5 year intervals.
DLYi(o) is discounted life intervals conditional on being alive in year i, as in equation (B6). These values should be
multiplied by 5 to calculate discounted life years.
DEi(o)  discounted earning conditional on being alive in year i. These values should be multiplied by 5 and then by $24,000.
As calculated in equation (11). Even after correcting for the change from $18,000 to $24,000, these values differ from
Shepard and Zeckhauser due to slightly different treatment of the discount rate and because the life table has been
extended from 90 to 100 years.



where DE&o) is expected discounted life earnings conditional on being alive in year t,

When the utility function has the form 8 , value of life simplifies to

(B11)

When equation (B11) simplifies even further to

Shepard and Zeckhauser chose 8 to be equal to 0.20. From equation (B4), annual

consumption, C,, is calculated to be $15,744.00.3  To illustrate equation (B11), assume

age t is 20. Then from table 1, the number of discounted life years remaining is

where the factor 5 is due to the use of 5 year intervals. Similarly, discounted earning is

calculated as

Thus, value of life at age 20 is
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TABLE 2. A LIFE TABLE FOR MALES THAT ASSUMES
CARDIOVASCULAR DISEASES ARE ELIMINATED

Value of

i Age sr(d ’ ) DLY $n> DEi(n) (millions)

1 20 1.000 4.2643 2.7447 1.6468

2 25 0.991 4.2040 3.1727 1.6796

3 30 0.983 4.1225 3.3246 1.6727

4 35 0.974 4.0220 3.2655 1.6345

5 40 0.964 3.8969 3.0750 1.5730

6 45 0.950 3.7518 2.7563 1.4899

7 50 0.932 3.5798 2.2981 1.3818

8 55 0.904 3.3946 1.7057 1.2535

9 60 0.866 3.1903 0.9500 1.0997

10 65 0.814 2.9740 0 0.9189

11 70 0.743 2.7601 0 0.8527

12 75 0.665 2.5098 0 0.7754

13 80 0.573 2.2364 0 0.6910

14 85 0.469 1.9278 0 0.5956

15 90 0.325 1.7089 0 0.5280

16 95 0.200 1.4701 0 0.4542

17 100 0.120 1.0000 0 0.3090

(1) The increase in survival probability assuming all cardio-vascular diseases are
eliminated is as calculated by S.H. Preston (1972) and (1976) and are based
on 1964 US life tables.

(2) Calculated as in table 1 assuming maximum earnings are $24,000 and R =
(1.05)-l*
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Table 2 gives a new life table that assumes all cardiovascular diseases are

eliminated. These values were developed by S.H. Preston et al (1972) and (1976). Table 3

shows that this new life table prolongs life on average 10.3 years at age 20. The chance

of living to age 100 has been increased by nearly a factor of 30. Because cardiovascular

diseases usually occur late In life when a person is no longer earning an income, annual

consumption under the new life table is about $300 less per year than that associated

with the old table.

Under the assumption that the utility function has the form U(C) = Cfl, the

formulas for compensating and equivalent surplus, equations (B7) and (B8), simplify to

and

(B12)

(B13)

For example, at age 20, compensating surplus, on an annual basis would be

From equation (B9), the total expected net present value would be

The results for other years are summarized in table 4. The compensating surplus

B - 1 0



TABLE 3. A COMPARISON OF THE ORIGINAL LIFE TABLE,
 AND THE NEW LIFE TABLE ASSOCIATED

WITH THE ELIMINATION OF CARDIOVASCULAR DISEASES, p(n)

Expected life years
at age 20

40

60

80

Annual Consumption C

Original New Life Gain
Life Table Table (Years)

72.1

73.9

78.4

88.6

$15,744

82.4

84.2

87.6

94.7

$15,448

10.3

10.3

9.2

6.1
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TABLE 4. COMPENSATING AND EQUIVALENT SURPLUS (MALE) FOR
A LIFE TABLE WITHOUT CARDIOVASCULAR DISEASE

Age

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Assumptions: 6 = 0.20
R = (i.os)-’
Maximum earnings = $24,000 (1981)

B - 1 2

Yearly Annuity Expected Net
Payment

Yearly Annuity Expected Net
Present Value Payment Present Value

2,105 44,882 2,486 51,264

2,779 58,412 3,453 69,496

3,573 73,645 4,736 92,275

4,523 90,965 6,519 121,845

5,622 109,552 9,008 159,734

6,824 128,021 12,458 207,201

7,971 142,679 16,784 258,855

9,181 155,825 23,061 325,566

10,247 163,458 31,018 396,476

11,198 166,509 41,475  474,645

12,000 165,609 54,796 558,128

12,614 158,286 70,059 623,950

13,133 146,859 89,344 680,842

13,529 130,403 110,983 702,244

13,287 113,526 96,776 555,884

11,551 84,908 46,674 259,463

-294 -1,471 -294 -1,471

Compensating Surplus: The maximum Equivalent Surplus: The minimum
amount a person would pay to keep
the new life table, conditional on

amount a person would require to

being alive at age t.
forfeit the new life table, condi-
tional on being alive at age t.



calculated as

B - 1 3

In actual fact most health and environmental programs would change a life table

only a very small amount (e.g., on the order of one death in a hundred thousand). Such a

small change would add only a few minutes or hours to an average life time. To

understand the implications of a small change in probability, assume a medical procedure

is available that would immunize one person in 100,000 from a fatal cardiovascular

disease (e.g., one person in 100,000 gets the new life table given in table 2). The survival

probability for the entire population would be a weighted average and would be

“not imply the United States should spend corresponding amounts per person on the
elimination of cardiovascular diseases. A flood of research dollars would by no
means guarantee such a breakthrough. The illustration, however, gives an idea of
the potential return to the individual.”

Equivalent surplus exceeds compensating surplus at all age levels and indicates that

at age 85, a person would require $702,000.00 to give up the new life table, and the

associated annual annuity payments would be over one hundred thousand dollars. As

Arthur points out in his analysis, (one that also differs from that presented here, as

discussed later) the large values associated with this new life table do

associated with the new life table has a maximum value of $166,509 at age 65 with

payments of $11,198 per year. The annual payment schedule continues to increase until

age 85 when a person would be willing to forego nearly 90% of his income ($13,529) to

keep the new life table. A negative value is actually recorded at age 100. This is

because both life tables are identical at this point--that is, everyone who survives to age

100 will live to age 105 and then die--but because annual consumption is slightly larger

under the old l i fe table, i t  would now be preferred. The values calculated for

compensating surplus in table 4 are disturbingly large. Yet cardiovascular disease is by

far the greatest cause of death in the United State’s (nearly 60% of all male deaths). A

life table without this disease would certainly be highly valued, particularly by people

with a strong risk aversion, as assumed here.



(B14)

where q$o) is the original survival probability, table 1, and qfln) is the life table without

cardiovascular disease as given in table 2. The difference between q$nl)  and q$o) is very

small and for all practical purposes one can assume yearly consumption would not differ

(i.e., Further, compensating surplus will be nearly equal to equivalent surplus.

Using the approximation,

valid for small x, compensating surplus is approximated by the expression

and the total net present value for a life table with survival

probabilities, q$n), would be

(B15)

Table 5 shows various values of CS, and TCS, and indicates that a procedure that could

immunize one person in every 100,000 against cardiovascular diseases would be valued at

54C per person at age 20. This increases to a maximum of $2.87 at age 75.

These values are not very large per person, but in aggregate these could amount to
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TABLE 5. COMPENSATING SURPLUS PER MALE (ALSO EQUAL TO
EQUIVALENT SURPLUS) FOR A LIFE TABLE THAT ASSUMES 1 MALE IN

100,000 CAN BE IMMUNIZED AGAINST CARDIOVASCULAR DISEASE

Compensating Surplus

Yearly Annuity Net Present
Payment (dollars) Value (dollars)

0.0265 0.54

0.0350 0.70

0.0456 0.89

0.0597 1.12

0.0778 1.38

0.1007 1.67

0.1264 1.95

0.1592 2.24

0.1951 2.49

0.2356 2.69

0.2793 2.85

0.3219 2.87

0.3678 2.81

0.4105 2.66

0.3864 2.21

0.2871 1.54

0 0

Age

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Assumptions: B = 0.20
R = (1.05)-l
Maximum earnings = $24,000 (1981)
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= 75 million ((0.0671) x (0.54) + (0.0579) x (0.70) +...)

=  75  m i l l i on  (0 .9123 )

=  6 8 . 4  m i l l i o n  d o l l a r s .

7 5  m i l l i o n (percent population) (compensating surplus)

substantial sums if enough people were affected. For example, if a health program could

immunize 1 male in 100,000 against cardiovascular disease for the approximately 75

million males over 20 years of age in the United States, and assuming they were

distributed by age as given in table 18, then the total compensating surplus would be

later section.

A similar calculation for females would essentially double the amount, as shown in a

Other Causes of Death

Cardiovascular disease is certainly the major cause of male deaths. Table 6

indicates the age patterns for this and two other causes of death in males: neoplasms and

motor vehicle fatalities. Tables 7 and 8 give the corresponding life tables that assume

these causes are eliminated. The compensating surplus for a life without neoplasms is

shown in table 9 and is calculated to be nearly $15,000 at age 20, increasing to nearly

$49,000 at age 60. Thus this table is valued at approximately 1/3 of that associated with

the elimination of cardiovascular diseases, as given in table 4. Also the life table

without neoplasms is valued less at older ages. For example, by age 90, the

compensating surplus associated with neoplasms is $6,269.00 or 13% of the maximum

that is achieved at age 60. In contrast compensating surplus at age 90 associated with

cardiovascular disease is still 68% of its maximum.

The age distribution for motor vehicle fatalities in table 6 is substantially different
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TABLE 6. AGE PATTERNS OF INCIDENCE FOR THREE CAUSES OF DEATH
AMONG MALES (CONDITIONAL ON LIVING AT AGE 20)

Cardiovascular Motor
Age Disease Neoplasm Vehicles

20 0.07% 0.35% 17.10%

25 0.13% 0.49% 11.15%

30 0.29% 0.70% 8.73%

35 0.69% 1.11% 7.56%

40 1.48% 2.04% 6.98%

45 2.69% 3.57% 6.89%

50 4.51% 6.34% 6.94%

55 6.95% 9.73% 6.7 I %

60 9.55% 13.28% 6.22%

65 12.75% 16.16% 6.31%

70 14.50% 15.79% 5.64%

75 15.17% 13.57% 4.66%

80 14.34% 9.50% 3.36%

85+ 16.87% 7.36% 1.75%

Fraction
of all 59.37% 16.22% 2.33%
Deaths
(age 20)

Reference S.H. Preston (1972) and (1976).
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TABLE 7. A LIFE TABLE FOR MALES THAT ASSUMES
ALL NEOPLASMS ARE ELIMINATED

Value of

i Age qw(‘) DLYi(n) DEi(d

1 20 1,000 4.1671 2.7231

2 25 0.991 4.0788 3.1445

3 30 0.983 3.9614 3.2887

4 35 0.974 3.8145 3.2193

5 40 0.961 3.6407 3.0249

6 45 0.942 3.4383 2.7057

7 50 0.914 3.2073 2.2570

8 55 0.870 2.9596 1.6830

9 60 0.807 2.69 63 0.9500

10 65 0.723 2.4164 0

11 70 0.609 2.1461 0

12 75 0.478 1.8637 0

13 80 0.334 1.5776 0

14 85 0.191 1.2991 0

15 90 0.0618 1.1635 0

16 95 0.0118 1.0920 0

17 100 0.0014 1.0000 0

(1) As calculated by S.H. Preston (1972) and (1976).

Assumptions: $3 = 0.20
R = (LOS)-
Maximum earnings = $24,000 (1981)

Life Vtt
(millions)

1.6339

1.6567

1.6372

1.5829

1.5259

1.4032

1.2769

1.1303

0.9598

0.7580

0.6731

0.5846

0.4948

0.4075

0.3649

0.3429

0.3137
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TABLE 8. A LIFE TABLE FOR MALES THAT ASSUMES
ALL MOTOR VEHICLE FATALITIES ARE ELIMINATED

i Age Cl$P DLYi(n) DEi(")

1 20 1.0 4.1547 2.7284

2 25 0.995 4.0466 3.1387

3 30 0.988 3.9158 3.2778

4 35 0.980 3.7518 3.2018

5 40 0.967 3.5593 3.0020

6 45 0.946 3.3389 2.6812

7 50 0.913 3.0930 2.2366

8 55 0.861 2.8325 1.6712

9 60 0.7854 2.5653 0.9500

10 65 0.6837 2.2927 0

11 70 0.5534 2.0414 0

12 75 0.4119 1.7846 0

13 80 0.2704 1.5262 0

14 85 0.1433 1.2673 0

15 90 0.0426 1.1465 0

16 95 0.0074 1.0773 0

17 100 0.00073 1.0000 0

(1) As calculated by S.H. Preston (1972) and (1976).

Value of
Life Vtt
(millions)

1.6370

1.6522

1.6277

1.5669

1.4822

1.3743

1.2434

1.0934

0.9226

0.7227

0.6428

0.5619

0.4806

0.3990

0.3610

0.3392

0.3149

R = (1.05)-l
Maximum earnings = $24,000 (1981)

Assumptions:
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COMPENSATING SURPLUS EQUIVALENT SURPLUS

Yearly Annuity Expected Net Yearly Annuity
Payment Present Value Payment

Expected Net
Present ValueAge

TABLE 9, COMPENSATING AND EQUIVALENT SURPLUS FOR
A LIFE TABLE WITHOUT NEOPLASMS: MALES

Assumptions: i3 = 0.20
R = (1.05)-l
Maximum earnings = $24,000 (1981)

B-20
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20 712 14,833

25 949 19,346

30 1,191 23,593

35 1,448 27,619

40 1,880 34,223

45 2,345 40,302

50 2,734 43,845

55 3,244 48,001

60 3,623 48,838

65 3,682 44,492

70 3,556 38,155

75 3,129 29,150

80 2,435 19,267

85 1,907 12,393

90 1,078 6,269

95 980 5,350

100 -58 -291

1,134

1,294

1,602

2,144

2,766

3,323

4,105

4,728

4,830

4,615

3,923

2,895

2,180

1,161

1,049

15,440

22,825

25,206

29,933

38,016

46,012

51,258

57,949

60,435

55,276

47,008

34,943

22,058

13,785

6,657

5,650

-291

748
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Table 12 gives the life table for American females as calculated by Preston (1972)

and (1976). Table 13 presents the estimated life table assuming neoplasms are

eliminated, and table 14 summarizes the principal features of these two life tables. Even

though annual consumption, C, is less for females than for males, due to the greater

expected life span, the maximum value of a female life, Vtt, at age 25, is 2.3% larger

than that calculated for males. Table 15 gives the compensating surplus and equivalent

surplus associated with a neoplasm free life. Compared to males, females would value

such a life table somewhat less (except at age 20), but broadly, such differences do not

appear significant. Although compensating surplus and equivalent surplus for a life

without cardiovascular disease or motor vehicle fatalities is not calculated here for

for a female because, typically, females live longer and earn less. Both of these

characteristics would tend to decrease annual consumption and possibly the value of life,

Vtt.  To make comparisons with male life tables more relevant, however, it will be

assumed here that females earn exactly what males do, i.e., $24,000 at age 50. (Such an

assumption would be appropriate also for married couples, although the total amount

presumably would differ from what is assumed here.)

from that associated with either cardiovascular fatalities or fatal neoplasms. The

highest risk occurs at age 20 and then declines fairly consistently. Thus, the impact of

motor vehicle fatalities is largest during the period when a person has earned income,

and as might be expected, consumption C for this life table actually increases slightly

from $15,744 to $15,761. Table 10 shows compensating surplus and equivalent surplus are

both at a maximum at age 20, and then decline steadily. The effects of round off error

can also be observed in these calculations. Table 11 summarizes the main results

associated with these three causes of death for males.

The Value of a Life Table Without Neoplasms for Females

The value of a life table calculated for a male should differ from that calculated



TABLE 10. COMPENSATING AND EQUIVALENT SURPLUS FOR
A LIFE TABLE WITHOUT MOTOR VEHICLE FATALITIES: MALES

COMPENSATING SURPLUS EQUIVALENT SURPLUS

Yearly Annuity Expected Net
Payment Present Value

566 11,740

429 8,686

405 7,923

294 5,526

304 5,405

313 5,234

234 3,620

269 3,808

289 3,710

152 1,747

158 1,605

164 1,463

142 1,081

188 1,189

89 507

-21 -113

-19 -95

Yearly Annuity Expected Net
Payment Present Value

585 12,077

440 0,872

415 8,082

299 5,605

309 5,485

319 5,313

237 3,661

273 3,857

294 3,762

153 1,759

159 1,616

165 1,473

143 1,090

189 1,200

89 510

-21 -113

-19 -95

Age

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

$ = 0.20
R = (1.05)‘l
Maximum earnings = $24,000 (1981)

Assumptions:
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TABLE 11. SUMMARY, THREE CAUSES OF DEATH FOR MALES

Without
Motor Vehicle

Fatalities
Without Fatal

Neoplasms

Without Fatal
Cardiovascular

Diseases
Original

Table

82.4 74.3 72.7

84.2 75.9 74.1

87.6 79.9 78.5

94.7 89.0 88.6

72.1

73.9

78.4

88.6

Expected
life span
at age

20

40

60

80

Annual
Consumption

Value of Life
at Age 25
(millions)

Fraction of
all Deaths

Maximum
Compensating
Surplus

Maximum
Equivalent
Surplus

$1,6420

$15,744 $15,448

56.88%

$1.6796

$166,509
(at age 65)

$702,244
(at age 85)

$60,435
(at age 60)

$48,838
(at age 60)

$1.6567

15.70%

$15,683 $15,761

2.67%

$1.6522

$11,740
(at age 20)

$12,077
(at age 20)
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TABLE 12. A LIFE TABLE FOR FEMALES

i Age

1 20

2 25

3 30

4 35

5 40

6 45

7 50

8 55

9 60

10 65

11 70

12 75

13 80

14 85

15 90

16 95

17 100

Value of

qd’) DLYi(o) DEi (0)
Life V,,
(millions)

1.000 4.2597 2.7702 1.6620

0.996 4.1771 3.1782 1.6853

0.992 4.0712 3.3063 1.6676

0.986 3.9435 3.2196 1.6174

0.977 3.7914 3.0017 1.5437

0.963 3.6144 2.6465 1.4458

0.943 3.4074 2.1611 1.3230

0.914 3.1701 1.5546 1.1761

0.873 2.8997 0.8291 1.0047

0.813 2.6035 0 0.8127

0.727 2.2886 0 0.7144

0.611 1.9568 0 0.6109

0.459 1.6255 0 0.5033

0.280 1.2862 0 0.4015

0.089 1.1493 0 0.3589

0.0157 1.0799 0 0.3371

0.0016 1.0000 0 0.3122

(I) As calculated by S.H. Preston (1972) and (1976).

Assumptions: .f3 = 0.20
R = (1.05)”
Maximum earnings = $24,000 (1981)
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TABLE 13. A LIFE TABLE FOR FEMALES THAT ASSUMES
ALL NEOPLASMS ARE ELIMINATED

Value of

i Age q$d(‘) DLYi(n) DEikd
Life Vtt
(millions)

1 20 1.000 4.3060 2.7905 1.6743

2 25 0.997 4.2323 3.2041 1.7010

3 30 0.993 4.1417 3.3385 1.6890

4 35 0.988 4.0300 3.2597 1.6447

5 40 0.982 3.8907 3.0506 1.5763

6 45 0.972 3.7235 2.7029 1.4826

7 50 0.960 3.5230 2.2205 1.3624

8 55 0.940 3.2886 1.6086 1.2160

9 60 0.911 3.0139 0.8652 1.0414

10 65 0.866 2.7039 0 0.8410

11 70 0.794 2.3718 0 0.7377

12 75 0.6889 2.0180 0 0.6278

13 80 0.539 1.6606 0 0.5165

14 85 0.347 1.3095 0 0.4074

15 90 0.1180 1.1617 0 0.3614

16 95 0.0224 1.0875 0 0.3383

17 100 0.0025 1.000 0 0.3111

(I) As calculated by S.H. Preston (1972) and (1976).
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TABLE 14. SUMMARY CHARACTERISTICS FOR FEMALES

20

40

60

80

Expected Life
Span at Age

Consumption C

Fraction of
All Deaths

Value of Life
at Age 25
(millions)

Maximum
Compensating
Surplus

Maximum
Equivalent
Surplus

Original
Life Table

70.2

79.2

82.2

89.2

$15,608

1.6853

Neoplasms
Eliminated

81.1

82.0

84.1

89.5

$15,552

15.24%

1.7010

$42,124
(at age 55)

$48,785
(at age 55)
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20 767 16,504

25 934 19,752

30 1,229 25,455

35 1,550 31,231

40 1,838 35,754

45 2,102 39,129

50 2,344 41,278

55 2,562 42,124

60 2,687 40,485

65 2,636 35,633

70 2,497 29,616

75 2,173 21,922

80 1,527 12,675

85 1,286 8,416

90 761 4,418

95 430 2,626

100 -54 -273

TABLE 15. COMPENSATING AND EQUIVALENT SURPLUS FOR
A LIFE TABLE WITHOUT NEOPLASMS: FEMALES

COMPENSATING SURPLUS
Yearly Annuity

Payment
Expected Net
Present Value

EQUIVALENT SURPLUS
Yearly Annuity

Payment
Expected Net
Present ValueAge

Assumptions: B = 0.20
R = (1.05)-l

Maximum earnings = $24,000 (1981)

809

997

1,343

1,728

2,091

2,432

2,768

3,078

3,259

3,185

2,985

2,535

1,699

1,406

802

500

-54

17,233

20,813

27,265

34,063

39,650

44,072

47,171

48,785

47,249

41,455

34,163

24,797

13,805

9,042

4,612

2,702

-273
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females, the age pattern of the incidence of these causes of death, table 16, indicates

that they should be similar to those calculated for males, table 6.

Discussion

Arthur (1981) in his analysis of value of l i fe, using l i fe cycle modeling of

consumption, defines a quantity he calls the marginal consumption equivalent, CE, to

measure the value of one life over another. It is essentially the difference between the

calculated “value of life” for one table and that for the other tableP  The difference

between the two values of life, is from equation (B10),

For small changes in the life table, Cn will be approximately equal to

co and so the marginal consumption equivalent would be approximated by the expression

and for

(B16)

(B17)
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TABLE 16. AGE PATTERNS OF INCIDENCE FOR THREE CAUSES OF DEATH
AMONG FEMALES (CONDITIONAL ON LIVING AT AGE 20)

Cardiovascular Motor
Age Disease Neoplasm Vehicles

20 0.07% 0.28% 9.85%

25 0.10% 0.44% 6.46%

30 0.17% 0.89% 6.24%

35 0.32% 1.61% 6.24%

40 0.56% 2.80% 6.46%

45 0.95% 4.54% 6.78%

50 1.69% 6.69% 6.89%

55 2.72% 8.49% 8.32%

60 4.71% 10.37% 8.21%

65 7.68% 12.73% 9.19%

70 11.39% 13.49% 8.32%

75 16.15% 13.57% 7.55%

80 20.22% 12.20% 5.69%

85+ 33.27% 11.91% 3.83%

Fraction
of all 64.5% 15.68% 0.94%
Deaths
(age 20)

Reference S.H. Preston (1972) and (1976).
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Comparing equation (B17) with equation (B15) when CE! wil l  be equal to TCSt.

After retirement when DE+“)  = DEt(o)  = 0,

and so CE+ would be less than compensating surplus by the factor (Ig). For values of t

between 1 and retirement, CE, could be either larger or smaller than, TCS,.  Table 17

compares these two measures for the large changes in the life table corresponding to the

elimination of cardiovascular disease, neoplasms and motor vehicles for males. The two

measures are most similar for motor vehicles where the new life table is most nearly like

the original one.

Perhaps the most important property identified in this analysis is that a new life

table will be most valued by that age group that is at the highest risk. While this has

clear intuitive appeal, this property is not obvious from a simple examination of how

“value of life,” Vtt,  changes with age. In the examples used here, value of life was at a

maximum at age 25, and for this reason, one might assume that this age group would also

have the highest willingness to pay for a new and better life table. This is not

necessarily true. In fact, for cardiovascular diseases and neoplasms, willingness to pay

for a new life table without these sources of death was a maximum in the age range of 55

to 85 when measured by either compensating surplus or equivalent surplus.

Effects of Latency

The assumption that all neoplasms or all cardiovascular diseases can be eliminated

is unrealistic, particularly in the context of environmental improvements where survival

rates are often increased only slightly (on the order of 1 in 100,000). Table 5 earlier

addressed this problem by calculating the compensating surplus for a life table that

assumes 1 person in 100,000 could be immunized against cardiovascular disease. The
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TABLE 17. COMPARING COMPENSATING SURPLUS WITH ARTHUR'S
"MARGINAL CONSUMPTION EQUIVALENT FOR MALES", 1981

Cardiovascular
Age Disease Neoplasm

TCS, CE+(‘) TCS, =t

20 49,908 23,270 14,833 10,330

40 109,552 97,148 34,223 49,983

60 163,458 180,835 67,621 40,904

80 146,859 211,096 19,267 14,922

(1) CE is Arthur’s marginal consumption equivalent.

Motor
Vehicles

TCS, =t

11,740 13,461

5,405 6,261

3,710 3,757

1,081 1,565
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values for willingness to pay were, of course, very much smaller--a few dollars at best--

but if the population at risk is large, then the total value of such a life table to society

would be very large indeed. A similar calculation for neoplasms is given below, where it

is again assumed that 1 male in a hundred thousand can be immunized against cancer.

Age 20 30 40 50 60 70 80

(do:::sf 0.16 0.25 0.38 0.46 0.55 0.43 0.21

These values are about four to five times smaller than that calculated for cardiovascular

disease, and reflects the fact that a cancer death is 3.6 times less likely. Total

willingness to pay among 100,000 persons aged 60, so that exactly one will have a cancer

free life would be 100,000 x 0.55 = $55,000.00. Note that this is not the same as

willingness to pay to reduce the number of cancer deaths by one, since that one person

with the cancer free life might have died (and indeed is likely to have died) of other

causes. Since cancer represents 15.9% of all male deaths at age 60, (see table 18)

willingness to pay to reduce the number of cancer deaths by 1 would be approximately

valued at

$55,000/0.159 = $349,900

For other age groups, this value would be less.

The value of a male life, V,,,  at age 60 is $918,900.00 from table 1. This

represents the willingness to pay to avoid a statistical death that occurs immediately.

Presumably the difference between this $918,900.00 and willingness to pay to reduce the

number of cancer deaths by one, $349,900, is due to a latency factor, since the 60 year

old male is not likely to die of cancer immediately.
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Age

20

25

30

35

40

45

50

55

60

65

70

75

80

85

Percent of
Population’

Cardiovascular
Disease Neoplasms

6.71 59.37 16.22

5.79 59.86 16.31

5.79 60.032 16.38

6.31 60.08 16.44

6.40 61.229 16.50

5.88 61.79 6.53

5.42 62.236 6.52

4.65 63.09 6.30

3.89 63.98 5.90

3.04 65.19 15.09

2.44 66.76 13.85

1.62 68.52 12.28

0.93 70.48 10.40

0.42 72.20 8 . 6

SOURCE: Preston, S.H. et al. (1972). These numbers represent US population
in 1964.

Motor
Vehicles

2.33

1.95

1.71

1.51

1.35

1.21

1.08

0.92

0.84

0.76

0.66

0.57

0.45

0.29

TABLE 18. PERCENT OF MALES DYING FROM SPECIFIC CAUSES
BY AGE AND CONDITIONAL ON BEING ALIVE

‘The fraction of males under age 20 (circa 1964) is 40.71%. Thus, the number of males in
the 20-24 age bracket conditional on living to age twenty is 6.71/(1-.4071) = 11.32%.
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the utility function of the form Cl whereB = 0.2,

discount factor and a discount factor for money that is equal to

the availability of a perfect market for annuities and insurance, and

Additional Concerns

The examples used in this report all used a common set of assumptions:

wages such that a person earns a maximum amount at age 50 of $24,000.

The values chosen for 8 and for the maximum earnings above will alter the value of life,

Vtt, compensating surplus and equivalent surplus in a simple and direct fashion. The

other common assumptions impact these calculations in a more subtle and indirect way

and generalizations are not obvious. These results therefore should be viewed as

illustrative of a methodology, and not as actual estimates. This is particularly true for

values calculated for age groups over 80. First, quality of life and other health issues are

more important for older people, and this factor is not reflected in these calculations.

Further, the assumption that all people die by age 105 distorts a life table somewhat,

particularly under the scenario that cardiovascular diseases have been eliminated.

Finally the life tables used in these examples are likely to be more uncertain at these

ages -- after all, a life table free of cardiovascular disease is a hypothetical construct.

This uncertainty is compounded by the fact that round off error is more important at

these age groups when the survival probabilities, q$ are small.

In summary, this appendix has developed a methodology for valuing one life table

over another and has illustrated this technique using several scenarios. Further, the

effects of latency have been identified by comparing the willingness to pay to avoid an

immediate death to the willingness to pay to avoid a cancer death (etc.) that will occur

sometime in the future.

B - 3 4



3. By equation B4,

2. Actually the preferred measure for valuing welfare change (see Freeman 1979) is
equivalent and compensating variation. However, Freeman shows that when there
a r e  o n l y  t w o alternatives avai lable, compensating surplus is identical to
compensating variation, and equivalent surplus is identical to equivalent variation.

N O T E S

1. If the real and subjective discount rates differ, then consumption will increase or
decrease over time depending on whether D/R is greater or less than 1.0.

4. Arthur’s analysis differs from the analysis of Cropper (1982) and Shepard and
Zeckhauser (1982) by putting a consumption constraint on society as a whole rather
than on the individual. Thus, while similar, Arthur’s results are not directly
comparable to the results obtained by these other authors or to the results presented
here.
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